Chronic Hepatitis C: Causes, Symptoms, Diagnosis, Treatment And Side Effects

Chronic Hepatitis C: Causes, Symptoms, Diagnosis, Treatment And Side Effects

Chronic Hepatitis C

The hepatitis C virus (HCV) is one of the most important causes of chronic liver disease in the United States. It accounts for about 15 percent of acute viral hepatitis, 60 to 70 percent of chronic hepatitis, and up to 50 percent of cirrhosis, end-stage liver disease, and liver cancer. Almost 4 million Americans, or 1.8 percent of the U.S. population, have antibody to HCV (anti-HCV), indicating ongoing or previous infection with the virus. Hepatitis C causes an estimated 8,000 to 10,000 deaths annually in the United States.

A distinct and major characteristic of hepatitis C is its tendency to cause chronic liver disease. At least 75 percent of patients with acute hepatitis C ultimately develop chronic infection, and most of these patients have accompanying chronic liver disease.

Chronic hepatitis C varies greatly in its course and outcome. At one end of the spectrum are patients who have no signs or symptoms of liver disease and completely normal levels of serum liver enzymes. Liver biopsy usually shows some degree of chronic hepatitis, but the degree of injury is usually mild, and the overall prognosis may be good. At the other end of the spectrum are patients with severe hepatitis C who have symptoms, HCV RNA in serum, and elevated serum liver enzymes, and who ultimately develop cirrhosis and end-stage liver disease. In the middle of the spectrum are many patients who have few or no symptoms, mild to moderate elevations in liver enzymes, and an uncertain prognosis. Researchers estimate that at least 20 percent of patients with chronic hepatitis C develop cirrhosis, a process that takes 10 to 20 years. After 20 to 40 years, a smaller percentage of patients with chronic disease develop liver cancer.

Chronic hepatitis C can cause cirrhosis, liver failure, and liver cancer. About 20 percent of patients develop cirrhosis within 10 to 20 years of the onset of infection. Liver failure from chronic hepatitis C is one of the most common reasons for liver transplants in the United States. Hepatitis C is the cause of about half of cases of primary liver cancer in the developed world. Men, alcoholics, patients with cirrhosis, people over age 40, and those infected for 20 to 40 years are more likely to develop HCV-related liver cancer.

Risk Factors and Transmission

HCV is spread primarily by contact with blood and blood products. Blood transfusions and the use of shared, unsterilized, or poorly sterilized needles and syringes have been the main causes of the spread of HCV in the United States. With the introduction in 1991 of routine blood screening for HCV antibody and improvements in the test in the mid-1992, transfusion-related hepatitis C has virtually disappeared. At present, injection drug use is the most common risk factor for contracting the disease. However, many patients acquire hepatitis C without any known exposure to blood or to drug use.

The major high-risk groups for hepatitis C are

  • People who had blood transfusions before June 1992, when sensitive tests for anti-HCV were introduced for blood screening.
  • People who have frequent exposure to blood products. These include patients with hemophilia, solid-organ transplants, chronic renal failure, or cancer requiring chemotherapy.
  • Health care workers who suffer needle-stick accidents.
  • Injection drug users, including those who used drugs briefly many years ago.
  • Infants born to HCV-infected mothers.

Other groups who appear to be at slightly increased risk for hepatitis C are

  • People with high-risk sexual behavior, multiple partners, and sexually transmitted diseases. 
  • People who use cocaine, particularly with intranasal administration, using shared equipment.

Maternal-Infant Transmission

Maternal-infant transmission is not common. In most studies, only 5 percent of infants born to infected women become infected. The disease in newborns is usually mild and free of symptoms. The risk of maternal-infant spread rises with the amount of virus in the mother's blood and with complications of delivery such as early rupture of membranes and fetal monitoring. Breast-feeding has not been linked to spread of HCV.

Sexual Transmission

Sexual transmission of hepatitis C between monogamous partners appears to be uncommon. Surveys of spouses and monogamous sexual partners of patients with hepatitis C show that less than 5 percent are infected with HCV, and many of these have other risk factors for this infection. For this reason, changes in sexual practices are not recommended for monogamous patients. Testing sexual partners for anti-HCV can help with patient counseling. People with multiple sex partners should be advised to follow safe sex practices, which should protect against hepatitis C as well as hepatitis B and HIV.

Sporadic Transmission

Sporadic transmission, when the source of infection is unknown, occurs in about 10 percent of acute hepatitis C cases and in 30 percent of chronic hepatitis C cases. These cases are also referred to as sporadic or community-acquired infections. These infections may have come from exposure to the virus from cuts, wounds, or medical injections or procedures.

Clinical Symptoms and Signs of Chronic Hepatitis C

Many people with chronic hepatitis C have no symptoms of liver disease. If symptoms are present, they are usually mild, nonspecific, and intermittent. They may include

  • fatigue
  • mild right-upper-quadrant discomfort or tenderness
  • nausea
  • poor appetite
  • muscle and joint pains
Similarly, the physical exam is likely to be normal or show only mild enlargement of the liver or tenderness. Some patients have vascular spiders or palmar erythema.

Clinical Features of Cirrhosis

Once a patient develops cirrhosis or if the patient has severe disease, symptoms and signs are more prominent. In addition to fatigue, the patient may complain of muscle weakness, poor appetite, nausea, weight loss, itching, dark urine, fluid retention, and abdominal swelling.

Physical findings of cirrhosis may include

  • enlarged liver
  • enlarged spleen
  • jaundice
  • muscle wasting
  • excoriations
  • ascites
  • ankle swelling

Extrahepatic Manifestations

Complications that do not involve the liver develop in 1 to 2 percent of people with hepatitis C. The most common is cryoglobulinemia, which is marked by

  • skin rashes, such as purpura, vasculitis, or urticaria
  • joint and muscle aches
  • kidney disease
  • neuropathy
  • cryoglobulins, rheumatoid factor, and low complement levels in serum
Other complications of chronic hepatitis C are

  • glomerulonephritis
  • porphyria cutanea tarda
Diseases that are less well documented to be related to hepatitis C are

  • seronegative arthritis
  • keratoconjunctivitis sicca (Sj√∂gren's syndrome)
  • non-Hodgkin's type, B-cell lymphomas
  • fibromyalgia
  • lichen planus

Diagnosis of Chronic Hepatitis C

Hepatitis C is most readily diagnosed when serum aminotransferases are elevated and anti-HCV is present in serum. The diagnosis is confirmed by the finding of HCV RNA in serum.

Acute Hepatitis C

Acute hepatitis C is diagnosed on the basis of symptoms such as jaundice, fatigue, and nausea, along with marked increases in serum ALT (usually greater than 10-fold elevation), and presence of anti-HCV or de novo development of anti-HCV.

Diagnosis of acute disease can be problematic because anti-HCV is not always present when the patient presents to the physician with symptoms. In 30 to 40 percent of patients, anti-HCV is not detected until 2 to 8 weeks after onset of symptoms. In this situation, testing for HCV RNA is helpful as this marker is present even before the onset of symptoms and lasts through the acute illness. Another approach to diagnosis of acute hepatitis C is to repeat the anti-HCV testing a month after onset of illness.

Chronic Hepatitis C

Chronic hepatitis C is diagnosed when anti-HCV is present and serum aminotransferase levels remain elevated for more than 6 months. Testing for HCV RNA (by PCR) confirms the diagnosis and documents that viremia is present; almost all patients with chronic infection will have the viral genome detectable in serum by PCR.

Diagnosis is problematic in patients who cannot produce anti-HCV because they are immunosuppressed or immunoincompetent. Thus, HCV RNA testing may be required for patients who have a solid-organ transplant, are on dialysis, are taking corticosteroids, or have agammaglobulinemia. Diagnosis is also difficult in patients with anti-HCV who have another form of liver disease that might be responsible for the liver injury, such as alcoholism, iron overload, or autoimmunity. In these situations, the anti-HCV may represent a false-positive reaction, previous HCV infection, or mild hepatitis C occurring on top of another liver condition. HCV RNA testing in these situations helps confirm that hepatitis C is contributing to the liver problem.

Differential Diagnosis

The major conditions that can be confused clinically with chronic hepatitis C include

  • autoimmune hepatitis
  • chronic hepatitis B and D
  • alcoholic hepatitis
  • nonalcoholic steatohepatitis (fatty liver)
  • sclerosing cholangitis
  • Wilson's disease
  • alpha-1-antitrypsin-deficiency-related liver disease
  • drug-induced liver disease

Treatment for Chronic Hepatitis C

The therapy of chronic hepatitis C has evolved steadily since alpha interferon was first approved for use in this disease more than ten years ago. At the present time, the optimal regimen appears to be a 24- or 48-week course of the combination of pegylated alpha interferon and ribavirin.

Alpha interferon is a host protein that is made in response to viral infections and has natural antiviral activity. Recombinant forms of alpha interferon have been produced, and several formulations (alfa-2a, alfa-2b, consensus interferon) are available as therapy of hepatitis C. These standard forms of interferon, however, are now being replaced by pegylated interferons (peginterferons). Peginterferon is alpha interferon that has been modified chemically by the addition of a large inert molecule of polyethylene glycol. Pegylation changes the uptake, distribution and excretion of interferon prolonging its half-life. Peginterferon can be given once weekly and provides a constant level of interferon in the blood, whereas standard interferon must be given several times weekly and provides intermittent and fluctuating levels. More importantly, peginterferon is more active than standard interferon in inhibiting HCV and yields higher sustained response rates with similar side effects. Because of its ease of administration and better efficacy, peginterferon has been replacing standard interferon both as monotherapy as well as combination therapy for hepatitis C.

Ribavirin is an oral antiviral agent that has activity against a broad range of viruses. By itself, ribavirin has little effect on HCV, but adding it to interferon increases the sustained response rate by two- to three-fold. For these reasons, combination therapy is now recommended for hepatitis C and interferon monotherapy is applied only when there are specific reasons not to use ribavirin.

Two forms of peginterferon have been developed and studied in large clinical trials: peginterferon alfa-2a (Pegasys®: Hoffman La Roche: Nutley, NJ) and peginterferon alfa-2b (Pegintron®: Schering-Plough Corporation, Kenilworth, NJ). These two products are roughly equivalent in efficacy and safety, but have different dosing regimens. Peginterferon alfa-2a is given subcutaneously in a dose of 180 mcg per week. Peginterferon alfa-2b is given subcutaneously weekly in doses of 1.5 mcg per kilogram per week (thus in the range of 75 to 150 mcg per week).

Ribavirin is an oral medication, given twice a day in 200-mg capsules for a total daily dose of 800 to 1,200 mg based upon body weight and the form of peginterferon. When combined with peginterferon alfa-2b, the recommended dose of ribavirin is 800 mg per day. When combined with peginterferon alfa-2a, the dose of ribavirin is 1,000 mg for patients who weigh less than 75 kilograms (165 pounds) and 1,200 mg for those who weight more than 75 kilograms. In all situations, ribavirin is given in two divided doses daily.

At the present, peginterferon alfa-2a has not been approved for use in chronic hepatitis C in the United States and is available only in clinical trials. Thus, only peginterferon alfa-2b is available for general use.

Combination therapy leads to rapid improvements in serum ALT levels and disappearance of detectable HCV RNA in up to 70 percent of patients. However, long-term improvement in hepatitis C occurs only if HCV RNA disappears during therapy and stays undetectable once therapy is stopped. Among patients who become HCV RNA negative during treatment, a proportion relapse when therapy is stopped. The relapse rate is lower in patients treated with combination therapy compared with monotherapy. Thus, a 48-week course of combination therapy using peginterferon and ribavirin yields a sustained response rate of approximately 55 percent. A similar course of peginterferon monotherapy yields a sustained response rate of only 35 percent. A response is considered "sustained" if HCV RNA remains undetectable for six months or more after stopping therapy.

The optimal duration of treatment varies depending on whether interferon monotherapy or combination therapy is used, as well as by HCV genotype. For patients treated with peginterferon monotherapy, a 48-week course is recommended, regardless of genotype. For patients treated with combination therapy, the optimal duration of treatment depends on viral genotype. Patients with genotypes 2 and 3 have a high rate of response to combination treatment (70 to 80 percent), and a 24-week course of combination therapy yields results equivalent to those of a 48-week course. In contrast, patients with genotype 1 have a lower rate of response to combination therapy (40 to 45 percent), and a 48-week course yields a significantly better sustained response rate. Again, because of the variable responses to treatment, testing for HCV genotype is clinically useful when using combination therapy.

Side Effects of Treatment for Chronic Hepatitis C

Common side effects of alpha interferon (occurring in more than 10 percent of patients) include

  • fatigue
  • muscle aches
  • headaches
  • nausea and vomiting
  • skin irritation at the injection site
  • low-grade fever
  • weight loss
  • irritability
  • depression
  • mild bone marrow suppression
  • hair loss (reversible)
Most of these side effects are mild to moderate in severity and can be managed. They are worse during the first few weeks of treatment, especially with the first injection. Thereafter, side effects diminish. Acetaminophen may be helpful for the muscle aches and low-grade fever. Fatigue and depression are occasionally so troublesome that the dose of interferon should be decreased or therapy stopped early. Depression and personality changes can occur on interferon therapy and be quite subtle and not readily admitted by the patient. These side effects need careful monitoring.

Ribavirin also causes side effects, and the combination is generally less well tolerated than interferon monotherapy. The most common side effects of ribavirin are

  • anemia
  • fatigue and irritability
  • itching
  • skin rash
  • nasal stuffiness, sinusitis, and cough
Ribavirin causes a dose-related hemolysis of red cells; with combination therapy, hemoglobin usually decreases by 2 to 3 g/dL and the hematocrit by 5 to 10 percent. The amount of decrease in hemoglobin is highly variable. The decrease starts between weeks 1 and 4 of therapy and can be precipitous. Some patients develop symptoms of anemia, including fatigue, shortness of breath, palpitations, and headache.

The sudden drop in hemoglobin can precipitate angina pectoris in susceptible people, and fatalities from acute myocardial infarction and stroke have been reported in patients receiving combination therapy for hepatitis C. For these important reasons, ribavirin should not be used in patients with preexisting anemia or with significant coronary or cerebral vascular disease. If such patients require therapy for hepatitis C, they should receive alpha interferon monotherapy.

Ribavirin has also been found to cause itching and nasal stuffiness. These are histamine-like side effects; they occur in 10 to 20 percent of patients and are usually mild to moderate in severity. In some patients, however, sinusitis, recurrent bronchitis, or asthma-like symptoms become prominent. It is important that these symptoms be recognized as attributable to ribavirin, because dose modification (by 200 mg per day) or early discontinuation of treatment may be necessary.

Uncommon side effects of alpha interferon and combination therapy (occurring in less than 2 percent of patients) include

  • autoimmune disease (especially thyroid disease)
  • severe bacterial or viral infections
  • marked thrombocytopenia
  • marked neutropenia
  • seizures
  • depression and suicidal ideation or attempts
  • retinopathy (microhemorrhages)
  • hearing loss and tinnitus
Rare side effects include acute congestive heart failure, renal failure, vision loss, pulmonary fibrosis or pneumonitis, and sepsis. Deaths have been reported from acute myocardial infarction, stroke, suicide, and sepsis.

A unique but rare side effect is paradoxical worsening of the disease. This is assumed to be caused by induction of autoimmune hepatitis, but its cause is really unknown. Because of this possibility, aminotransferases should be monitored. If ALT levels rise to greater than twice the baseline values, therapy should be stopped and the patient monitored. Some patients with this complication have required corticosteroid therapy to control the hepatitis.

Who Should Be Treated?

Patients with anti-HCV, HCV RNA, elevated serum aminotransferase levels, and evidence of chronic hepatitis on liver biopsy, and with no contraindications, should be offered therapy with the combination of alpha interferon and ribavirin. The National Institutes of Health Consensus Development Conference Panel recommended that therapy for hepatitis C be limited to those patients who have histological evidence of progressive disease. Thus, the panel recommended that all patients with fibrosis or moderate to severe degrees of inflammation and necrosis on liver biopsy should be treated and that patients with less severe histological disease be managed on an individual basis. Patient selection should not be based on the presence or absence of symptoms, the mode of acquisition, the genotype of HCV RNA, or serum HCV RNA levels.

Patients with cirrhosis found through liver biopsy can be offered therapy if they do not have signs of decompensation, such as ascites, persistent jaundice, wasting, variceal hemorrhage, or hepatic encephalopathy. However, interferon and combination therapy have not been shown to improve survival or the ultimate outcome in patients with preexisting cirrhosis.

Patients older than 60 years also should be managed on an individual basis, since the benefit of treatment in these patients has not been well documented and side effects appear to be worse in older patients.

The role of interferon therapy in children with hepatitis C remains uncertain. Ribavirin has yet to be evaluated adequately in children, and pediatric doses and safety have not been established. Thus, if children with hepatitis C are treated, monotherapy is recommended, and ribavirin should not be used outside of controlled clinical trials.

In people with both HCV and HIV infection, benefits of therapy for hepatitis C have only recently been evaluated. The decision to treat people co-infected with HIV must take into consideration the concurrent medications and medical conditions. If CD4 counts are normal or minimally abnormal (> 400/mL), responses are similar in frequency to those in patients who are not infected with HIV. The efficacy of combination therapy in HIV-infected people has been tested in only a small number of patients. Ribavirin may still have significant interactions with other antiretroviral drugs.

In many of these indefinite situations, the indications for therapy should be reassessed at regular intervals. In view of the rapid developments in hepatitis C today, better therapies may become available within the next few years, at which point expanded indications for therapy would be appropriate.

In patients with clinically significant extrahepatic manifestations, such as cryoglobulinemia and glomerulonephritis, therapy with alpha interferon can result in remission of the clinical symptoms and signs. However, relapse after stopping therapy is common. In some patients, continual, long-term alpha interferon therapy can be used despite persistence of HCV RNA in serum if clinical symptoms and signs resolve on therapy.

Who Should Not Be Treated?

Therapy is inadvisable outside of controlled trials for patients who have

  • clinically decompensated cirrhosis because of hepatitis C
  • normal aminotransferase levels
  • a kidney, liver, heart, or other solid-organ transplant
  • specific contraindications to either monotherapy or combination therapy
Contraindications to alpha interferon therapy include severe depression or other neuropsychiatric syndromes, active substance or alcohol abuse, autoimmune disease (such as rheumatoid arthritis, lupus erythematosus, or psoriasis) that is not well controlled, bone marrow compromise, and inability to practice birth control. Contraindications to ribavirin and thus combination therapy include marked anemia, renal dysfunction, and coronary artery or cerebrovascular disease, and, again, inability to practice birth control.

Alpha interferon has multiple neuropsychiatric effects. Prolonged therapy can cause marked irritability, anxiety, personality changes, depression, and even suicide or acute psychosis. Patients particularly susceptible to these side effects are those with preexisting serious psychiatric conditions and patients with neurological disease.

Strict abstinence from alcohol is recommended during therapy with interferon. Interferon therapy can be associated with relapse in people with a previous history of drug or alcohol abuse. Therefore, alpha interferon should be given with caution to a patient who has only recently stopped alcohol or substance abuse. Typically a 6-month abstinence is recommended before starting therapy. Patients with continuing problems of alcohol or substance abuse should only be treated in collaboration with alcohol or substance abuse specialists or councilors. Patients can be successfully treated while on methadone.

Alpha interferon therapy can induce autoantibodies, and a 6- to 12-month course triggers an autoimmune condition in about 2 percent of patients, particularly if they have an underlying susceptibility to autoimmunity (high titers of antinuclear or antithyroid antibodies, for instance). Exacerbation of a known autoimmune disease (such as rheumatoid arthritis or psoriasis) occurs commonly during interferon therapy.

Alpha interferon has bone marrow suppressive effects. Therefore, patients with bone marrow compromise or cytopenias, such as low platelet count (< 75,000 cells/mm3) or neutropenia (< 1,000 cells/mm3) should be treated cautiously and with frequent monitoring of cell counts. These side effects appear to be more common with peginterferon than standard interferon.

Ribavirin causes red cell hemolysis to a variable degree in almost all patients. Therefore, patients with a preexisting hemolysis or anemia (hemoglobin < 11 g or hematocrit < 33 percent) should not receive ribavirin. Similarly, patients who have significant coronary or cerebral vascular disease should not receive ribavirin, as the anemia caused by treatment can trigger significant ischemia. Fatal myocardial infarctions and strokes have been reported during combination therapy with alpha interferon and ribavirin.

Ribavirin is excreted largely by the kidneys. Patients with renal disease can develop hemolysis that is severe and even life-threatening. Patients who have elevations in serum creatinine above 2.0 mg/dL should not be treated with ribavirin.

Finally, ribavirin causes birth defects in animal studies and should not be used in women who are not practicing adequate means of birth control. Alpha interferon also should not be used in pregnant women as it has direct antigrowth and antiproliferative effects.

Combination therapy should therefore be used with caution. Patients should be fully informed of the potential side effects before starting therapy.